
 

 

6.1.1 and 6.1.4 Identify the Resources That Need to Be Managed Within a Computer System and 

Describe Problems Resulting From Their Limitations 

Computer systems rely on various resources to function effectively. These resources, along with potential 

problems arising from their limitations, include: 

• Primary Memory (RAM): Temporary storage used for running programs and data currently in use. 

Limited size can impact multitasking and program execution. 

o Problems: Frequent use of secondary storage (virtual memory) can lead to slower system 

performance. Users may experience delays and reduced productivity. 

• Secondary Storage: Non-volatile storage for data and software, such as hard drives (HDDs), solid-

state drives (SSDs), and external storage devices. 

o Problems: Insufficient storage prevents the installation of necessary software and storage of 

files. Users must frequently delete data to free up space. 

• Processor Speed (CPU): Determines the number of instructions executed per second. Measured in 

GHz, higher speeds improve performance. 

o Problems: Inadequate processor speed results in sluggish performance for resource-intensive 

applications and increases task completion time, wasting user effort. 

• Bandwidth: The amount of data transmitted over a network in a given time. Measured in bits per 

second (bps), it affects network performance. 

o Problems: Low bandwidth affects data transfer rates, leading to slow downloads and 

buffering in streaming services. 

• Screen Resolution: The number of pixels displayed on a screen. Higher resolutions improve visual 

clarity and user experience. 

o Problems: Limited resolution may hinder visual quality for tasks requiring high clarity, such 

as graphic design. 

• Disk Storage: Space available for storing files and applications. Insufficient storage can limit system 

capabilities. 

o Problems: Similar to secondary storage limitations, low disk storage restricts data and 

software storage, impacting system usability. 

• Sound Processor: Manages audio input and output. High-quality sound processors enhance 

multimedia experiences. 

o Problems: Weak sound processors result in poor audio quality, affecting multimedia 

experiences. 

• Graphics Processor (GPU): Handles rendering of images, videos, and 3D graphics. Essential for 

gaming, video editing, and graphic-intensive applications. 

o Problems: Insufficient GPU power cannot handle advanced graphics tasks, making 3D 

rendering and gaming impractical. 

• Cache: A small, high-speed storage area in the CPU for frequently used data. Larger caches can 

significantly improve performance. 

Za
hr
a 
Za
hi
d



 

 

o Problems: Limited cache size may cause slower data retrieval for frequently used 

instructions. 

• Network Connectivity: The ability of a system to connect to other devices or networks via wired or 

wireless connections. 

o Problems: Poor network connectivity can lead to disruptions in communication and slow 

network speeds. 

Multi-Access and Multiprogramming Environments 

• In multi-access systems, multiple users share resources, which may lead to: 

o Delays due to high demand. 

o Overloaded servers causing system crashes. 

• Multiprogramming systems must efficiently allocate resources to multiple programs, failing which: 

o Programs may experience delays. 

o Users may encounter frequent system freezes. 

 
6.1.2 Evaluate the Resources Available in a Variety of Computer Systems 

Different computer systems have varying resource capabilities based on their intended use: 

1. Mainframes: 

o Large-scale systems designed for heavy workloads. 

o High processor speed, extensive primary memory, and large disk storage. 

o Used in enterprises for batch processing, transaction processing, and data analysis. 

2. Servers: 

o Provide resources and services to other computers over a network. 

o High storage capacity, robust processors, and network connectivity. 

o Common in web hosting, file storage, and database management. 

3. Personal Computers (PCs): 

o Versatile systems for general use. 

o Moderate processor speed, RAM, and storage capacity. 

o Suitable for everyday tasks like browsing, document creation, and gaming. 

4. Sub-Laptops (e.g., Chromebooks): 

o Lightweight systems with limited processing power. 

o Focused on portability and battery efficiency. 

o Used for basic tasks like web browsing and email. 

5. Personal Digital Devices: 

o Cell Phones: Compact, with limited processing power and storage; optimized for 

communication and apps. 

o PDAs (Personal Digital Assistants): Older technology with limited resources for task 

management and scheduling. 

o Digital Cameras: Specialized for image processing with minimal storage and computational 

power. 

Za
hr
a 
Za
hi
d



 

 

AIM 9: Appreciate Resource Availability Issues in Computer System Development 

As technology evolves, disparities in resource availability become evident: 

• Developing countries may struggle to access modern hardware. 

• Newer systems require higher resources, making older devices obsolete. 

• Environmental concerns arise from e-waste generated by frequent upgrades. 

 
6.1.3 Identify the Limitations of a Range of Resources in a Specified Computer System 

Resource limitations can significantly impact a computer system's performance: 

• Single Processor Systems: Inadequate for demanding tasks like rendering 3D graphics or handling 

multiple applications simultaneously. 

• Limited RAM: Causes slow performance when multitasking or running large applications. 

• Low Bandwidth: Leads to slow network speeds and lag in online activities. 

• Small Storage Capacity: Restricts the amount of data and software that can be stored. 

• Low-Quality GPU: Hinders performance in gaming, video editing, and rendering tasks. 

• Weak Sound Processors: Result in poor audio quality, affecting multimedia experiences. 

 

6.1.5: Role of the Operating System (OS) in Managing Memory, Peripherals, and Hardware Interfaces 

The operating system (OS) is the software that acts as an intermediary between users, applications, and 

the hardware of a computer. It ensures that resources are allocated efficiently and that hardware and 

software function together seamlessly. 

 
1. Managing Memory 

The OS manages the system’s memory to ensure smooth execution of programs and efficient resource 

utilization. 

• Allocation of Memory: 

o The OS assigns specific memory spaces to programs and ensures no overlap occurs between 

them. 

o It tracks which parts of memory are in use and which are free. 

• Swapping and Virtual Memory: 

o When there is insufficient RAM, the OS temporarily moves less-used data from RAM to 

virtual memory (on the hard drive) to free up space for active processes. 

o This ensures the system can handle larger workloads, though it may slow down 

performance. 

• Time-Slicing and Multitasking: 

o In multitasking environments, the OS uses time-slicing to switch between programs 

running simultaneously. 

o It ensures each program gets enough CPU time without interference. 

• Memory Protection: 

o The OS prevents one program from accessing or corrupting another program’s memory. 

Za
hr
a 
Za
hi
d



 

 

 
2. Managing Peripherals 

Peripherals include external devices such as keyboards, mice, printers, and storage devices. The OS 

ensures proper communication between the computer and these devices. 

• Device Drivers: 

o The OS uses device drivers, which are specialized software components that allow the OS to 

interact with peripherals. 

o Drivers translate OS commands into instructions that specific hardware can understand. 

• Input/Output (I/O) Management: 

o The OS manages the flow of data between the CPU and peripherals. 

o It handles input from devices like keyboards and mice and output to devices like monitors 

and printers. 

• Buffering and Spooling: 

o Buffering: Temporarily stores data to smooth out the speed differences between the CPU 

and slower peripherals (e.g., printers). 

o Spooling: Queues data for output devices (e.g., printing multiple documents in order). 

 
3. Managing Hardware Interfaces 

The OS manages communication with the hardware, ensuring efficient operation and resource allocation. 

• Hardware Abstraction: 

o The OS provides a standardized interface for applications to interact with hardware 

without needing to understand hardware specifics. 

o This abstraction simplifies application development. 

• Interrupt Handling: 

o The OS monitors interrupts, which are signals from hardware devices requiring immediate 

attention (e.g., pressing a key or a network request). 

o It prioritizes and processes these interrupts efficiently. 

• Resource Allocation: 

o The OS decides how to allocate hardware resources like CPU time, disk space, and network 

bandwidth. 

o It prioritizes tasks based on importance and urgency. 

 
Examples of OS Roles 

• Memory Management: 

o Running multiple applications simultaneously (e.g., web browser and word processor) 

without crashing due to memory conflicts. 

o Using virtual memory when RAM is insufficient. 

• Peripheral Management: 

o Sending print jobs to a printer queue while allowing other programs to continue operating. 

Za
hr
a 
Za
hi
d



 

 

o Detecting and configuring a new USB device automatically. 

• Hardware Interfaces: 

o Handling user input from a keyboard and mouse while outputting processed data to the 

display. 

o Ensuring network cards operate correctly for internet access. 

 
Importance of OS in Resource Management 

Without the OS efficiently managing these components: 

• Programs may overwrite each other’s memory. 

• Peripherals might not function correctly or at all. 

• Hardware resources could be wasted or inefficiently used, slowing down the system. 

6.1.7: Outline OS Resource Management Techniques 

Operating systems use various techniques to manage system resources effectively, ensuring smooth 

operation and efficient allocation. Below is an outline of key resource management techniques. 

 
1. Scheduling 

• Purpose: Determines the order and allocation of CPU time for processes. 

• Types of Scheduling: 

o First-Come, First-Served (FCFS): Processes are executed in the order they arrive. 

o Round-Robin: Each process gets a fixed time slice, ensuring fairness. 

o Priority Scheduling: Higher-priority processes are executed first. 

• When Used: In multitasking environments to maximize CPU utilization and avoid process 

starvation. 

 
2. Policies 

• Purpose: Define rules for resource allocation, access, and usage based on system goals. 

• Examples: 

o FIFO (First In, First Out): Oldest resource request is served first. 

o Least Recently Used (LRU): Resources not recently accessed are replaced first. 

• When Used: To ensure fairness, efficiency, or specific priorities in resource management (e.g., 

memory allocation or disk scheduling). 

 
3. Multitasking 

• Purpose: Allows multiple processes to run simultaneously by sharing system resources like CPU and 

memory. 

• How It Works: The OS quickly switches between tasks (time-slicing), giving the appearance of 

simultaneous execution. 

• When Used: In systems requiring multiple applications to run concurrently (e.g., web browser and 

media player). 

Za
hr
a 
Za
hi
d



 

 

 
4. Virtual Memory 

• Purpose: Extends physical memory (RAM) by using a portion of secondary storage (hard 

drive/SSD) as additional memory. 

• How It Works: 

o When RAM is full, inactive data is moved to virtual memory. 

o Active data is swapped back into RAM as needed. 

• When Used: When the system runs out of physical memory to handle more processes or larger 

programs. 

 
5. Paging 

• Purpose: Divides memory into fixed-sized blocks called pages for efficient memory management. 

• How It Works: 

o Pages are loaded into page frames in physical memory as needed. 

o Unused pages are swapped out to secondary storage. 

• When Used: To prevent fragmentation and make better use of memory. 

 
6. Interrupt 

• Purpose: Allows hardware or software to signal the CPU to stop its current task and handle an 

urgent event. 

• How It Works: 

o Interrupts are prioritized and queued. 

o The CPU processes them based on urgency, ensuring high-priority tasks are handled first. 

• When Used: For critical events like hardware failures, keypresses, or incoming network data. 

 
7. Polling 

• Purpose: Actively checks devices or programs to determine if they are ready for data transfer or 

require attention. 

• How It Works: 

o The CPU repeatedly asks devices if they need service. 

o Unlike interrupts, polling relies on continuous checking, which can be less efficient. 

• When Used: In simpler systems or devices where interrupt-driven processing is unnecessary. 

 
Comparison of Techniques 

Technique Purpose Example 

Scheduling Allocates CPU time efficiently Running multiple processes without delays. 

Policies Defines resource allocation rules Managing memory access using LRU. 

Multitasking Runs multiple tasks simultaneously Playing music while browsing the web. 

Za
hr
a 
Za
hi
d



 

 

Technique Purpose Example 

Virtual 

Memory 

Extends RAM capacity using secondary 

storage 

Running a program that exceeds physical 

memory capacity. 

Paging 
Manages memory efficiently using 

pages 
Swapping inactive program parts to disk. 

Interrupt Handles urgent events in real-time Responding to a keypress or mouse click. 

Polling Actively checks device readiness Continuously checking a printer for job status. 

 
Why These Techniques Are Used 

• Efficiency: Optimize resource utilization (CPU, memory, storage). 

• Fairness: Ensure all processes receive adequate system time and resources. 

• Reliability: Handle critical events promptly to avoid system failure. 

• Scalability: Support multiple users, devices, and applications simultaneously. 

6.1.8: Advantages of Producing a Dedicated Operating System for a Device 

A dedicated operating system is specifically designed and optimized for a particular device or purpose, 

unlike general-purpose operating systems (e.g., Windows or Linux). The decision to create a dedicated OS 

offers several advantages related to size, speed, customization, and device-specific functionality. 

 
Advantages of a Dedicated Operating System 

1. Optimized Size 

• Smaller Storage Footprint: 

o A dedicated OS includes only the essential features and components required for the 

device's functionality, reducing storage requirements. 

• Example: The OS for an embedded system like a washing machine or digital camera is smaller 

than a general-purpose OS. 

• Advantage: 

o Saves storage space, making it ideal for devices with limited memory or storage capacity. 

 
2. Enhanced Speed and Performance 

• Faster Response Time: 

o By eliminating unnecessary processes and features, a dedicated OS ensures faster execution 

of tasks. 

• Efficient Resource Utilization: 

o Designed to work with the device’s specific hardware, leading to efficient CPU and memory 

usage. 

• Example: Gaming consoles like PlayStation use dedicated OS to reduce lag and optimize gameplay 

performance. 

• Advantage: 

Za
hr
a 
Za
hi
d



 

 

o Improves user experience by providing quicker and more reliable operation. 

 
3. Customization and Device-Specific Features 

• Tailored Functionality: 

o A dedicated OS can be customized to meet the specific needs of the device, offering unique 

features that general-purpose OSs cannot provide. 

• Better Integration: 

o Ensures seamless interaction with the device’s hardware and peripherals, such as cameras, 

sensors, or touchscreens. 

• Example: 

o iOS for Apple devices offers smooth integration with hardware features like the Face ID 

system. 

• Advantage: 

o Provides a superior, tailored user experience and ensures full utilization of device 

capabilities. 

 
4. Increased Security 

• Minimized Vulnerabilities: 

o A dedicated OS has fewer features and entry points, reducing the risk of malware or 

security breaches. 

• Proprietary Control: 

o Developers retain full control over the OS, allowing them to implement strict security 

measures. 

• Example: Banking ATMs use dedicated OSs to ensure secure transactions. 

• Advantage: 

o Enhances user trust and protects sensitive information. 

 
5. Competitive Advantage 

• Proprietary Innovation: 

o A dedicated OS allows manufacturers to create unique user interfaces or features, setting 

their device apart from competitors. 

• Example: Samsung's One UI (based on Android) enhances user experience compared to stock 

Android. 

• Advantage: 

o Attracts users by offering exclusive features and experiences. 

 
S/E (Social/Ethical) Issue: Proprietary Software 

• Control and Ownership: 

Za
hr
a 
Za
hi
d



 

 

o Proprietary OSs restrict users from modifying the software, raising concerns about user 

rights and innovation. 

• Example: Apple restricts customization in iOS, limiting user flexibility. 

• Ethical Consideration: 

o While proprietary systems offer security and stability, they may reduce transparency and 

user freedom. 

 
Comparison: Dedicated OS vs Pre-Existing OS 

Aspect Dedicated OS Pre-Existing OS 

Size Smaller, tailored to specific needs Larger, includes general-purpose features 

Speed Optimized for the device, faster performance May include unnecessary processes, slower 

Customization Fully customizable for the device Limited customization options 

Security More secure due to fewer vulnerabilities More prone to attacks due to broad usage 

Cost High development cost Cheaper as it’s already available 

6.1.9: How an Operating System Hides the Complexity of Hardware from Users and Applications 

An operating system (OS) acts as an abstraction layer, simplifying the interaction between hardware, 

users, and applications. It hides the hardware's complexity by providing a virtualized interface, allowing 

users and developers to work without needing in-depth knowledge of hardware details. 

 
How the OS Virtualizes Hardware 

1. Drive Letters and File Systems 

• Example: The OS assigns drive letters like C: or D: to physical storage devices (e.g., hard drives, 

SSDs, USB drives). 

o Users don’t need to know how data is physically stored or retrieved from the drive. 

• Benefit: Makes storage management intuitive and user-friendly by abstracting the hardware 

structure. 

 
2. Virtual Memory 

• Example: Virtual memory allows the OS to treat secondary storage (e.g., hard drives) as an 

extension of RAM. 

o Applications think they have access to more memory than the physical RAM available. 

• Benefit: Hides memory limitations from applications, enabling them to function even with limited 

physical resources. 

 
3. Input Devices 

• Example: The OS standardizes how input devices like keyboards, mice, and touchscreens 

communicate with the system through drivers. 

o Applications receive input in a consistent format, regardless of the device’s hardware. 

Za
hr
a 
Za
hi
d



 

 

• Benefit: Users and applications don’t need to worry about specific device compatibility or 

protocols. 

 
4. Java Virtual Machine (JVM) 

• Example: The JVM provides a platform-independent execution environment for Java programs. 

o Java applications run on the JVM, which translates code into hardware-specific 

instructions. 

• Benefit: Allows Java programs to run on any system with a JVM, regardless of the underlying 

hardware. 

 
5. Hardware Abstraction Layer (HAL) 

• Example: The HAL abstracts hardware details like CPU architecture, ensuring applications can run 

without modification on different devices. 

• Benefit: Simplifies application development and increases compatibility. 

 
Issue of Localization and Compatibility 

Problem: Differences in hardware and software standards across regions can cause compatibility issues. 

• Example: 

o Localization: Some systems use different file formats, keyboard layouts, or date formats 

based on the country. 

o Power Standards: Devices designed for specific voltage systems may not work universally. 

• Impact: These differences may require region-specific configurations or software versions, 

increasing complexity. 

Solution: 

• OS developers often include localization options to adapt to regional differences (e.g., language 

settings, file format preferences). 

 
Summary of OS Virtualization 

Hardware Component How OS Hides Complexity Example 

Storage Devices 
Virtualizes physical drives into logical drive 

letters 
Drive C: on Windows systems 

Memory Uses virtual memory to extend RAM Swapping in/out data from disk 

Input Devices Standardizes input through drivers Plug-and-play USB devices 

Execution 

Environment 

Abstracts hardware with virtual machines (e.g., 

JVM) 

Java apps running on all 

platforms 

CPU/Hardware 

Details 
Provides a hardware abstraction layer 

Apps run on different 

architectures 

 

Za
hr
a 
Za
hi
d


